Proton ve Çekirdek

1900’lü yılların başlarında, atomların iki özelliği açıkça belli olmuştu: Atomlar elektronları içeriyordu, ve elektriksel olarak nötürdü, yani yüksüzdü. Elektriksel açıdan yüksüz olabilmesi için bir atomda eşit sayıda artı ve eksi yük bulunmalıydı. Bu bilgilere dayanarak Thomson, atomu içinde gömülmüş halde elektronlar bulunan artı yüklü bir küre olarak öneriyordu (Şekil 1). Thomson’un bu “kuru üzümlü kek” benzeri atom modeli uzun yıllar atom kuramı olarak kabul gördü.

Şekil 1. Thomson atom modeli. Bu model “üzümlü kek” e benzer. Elektronlar homojen olarak pozitif yüklü küre içerisinde gömülmüş gibidir.

1910’da, önceleri Cambridge üniversitesinde Thomson ile çalışmış olan Yeni Zelandalı fizikçi Ernest Rutherford, a taneciklerini kullanarak atomun yapısını incelemeye karar verdi. Meslektaşı Hans Geiger ve öğrencisi Ernest Marsden ile birlikte, Rutherford bir dizi deney yaptı. Bu deneylerde radyoaktif bir kaynaktan çıkan a taneciklerinin çarpacağı hedef olarak çok ince altın ve başka metal yapraklar kullandı (Şekil 2). Deneylerinde a taneciklerinin çoğunun metal yaprakların içinden sapmadan ya da çok az sapma yaparak geçtiğini gördü; ancak zaman zaman bazı a taneciklerinin büyük bir açı ile sapma yaptığını da fark etti. Hatta bazen a taneciği geldiği yöne doğru geri tepiyordu! Bu çok şaşırtıcı bir buluştu; çünkü Thomson’un atom modeline göre atomun artı yükü tüm atoma o kadar dağılmış ve yoğunluğu o kadar küçüktü ki. a taneciklerinin atomun içinden hemen hemen hiç sapmadan geçmesi beklenmekteydi. Nitekim Rutherfordun bu buluş karşısında ilk tepkisi, “bu bir kağıt mendile 15 inch’lik bir kurşun sıktığınızda kurşunun geri tepip sizi vurması kadar inanılmaz bir olaydı” demek olmuştur.

Şekil 2. (a) a Taneciklerinin bir altın yaprak tarafından saçılmasını ölçmek için Rutherford’un tasarladığı deney düzeneği. a Taneciklerinin çoğu sapma yapmadan ya da çok az sapma ile altın yaprağın içinden geçerlerken bir kaç tanesi geniş açılarla sapar ve zaman zaman bir a taneciği geri teper, (b) Altın yaprağın içinden geçen ve çekirdek tarafından saptırılan a taneciklerinin büyütülmüş görünümü.

a Tanecikleri saçılması deneyinin sonuçlarını açıklayabilmek amacıyla, Rutherford atom yapısı için yeni bir model oluşturdu ve bu modelde atomun büyük bir kısmının boşluktan oluştuğunu öneriyordu. Böyle bir yapıda a taneciklerinin çoğu altın yaprağının içinden sapmadan ya da çok az sapma yaparak geçebilirdi. Rutherford atomdaki artı yüklerin tümünün, atomun içinde yoğun ve merkezi bir çekirdekte odaklandığını önerdi. Böylece saçılma deneylerinde, herhangi bir a taneciği bir atomun çekirdeğine yaklaştığında büyük bir itici kuvvetle karşı karşıya kalıyor ve büyük bir sapma yapıyordu. Ayrıca, doğrudan doğruya bir çekirdeğe doğru hareket eden bir a taneciği hareket yönünü tam tersine çevirecek kadar büyük bir itici güce maruz kalacaktı.

Çekirdekteki artı yüklü taneciklere proton adı verilir. Yapılan başka deneylerde ise, bir protonun yükünün büyüklük olarak bir elektronun yüküne eşit olduğu ve protonun kütlesinin de 1,67262 x 10-24 g, yani elektron kütlesinin 1840 katı kadar olduğu bulunmuştur.

Araştırmaların bu safhasında, bilim adamları atomu şu şekilde algılıyorlardı: Çekirdeğin kütlesi atomun kütlesinin çoğunu içerir, ancak çekirdeğin kapladığı hacim atomun hacminin sadece 1/1013 ü kadardır. Günümüzde atom (ve molekül) büyüklükleri pikometre (pm) adı verilen SI birimi cinsinden ifade edilir ve

1 pm = 1 X 10-12 m

Tipik bir atomun yarıçapı 100 pm kadardır. Oysa, bir atom çekirdeğinin yarıçapı sadece 5 X 10 3 pm dolayındadır. Bir atomla o atoma ait çekirdeğin göreceli olarak boyutlarını anlamak için şöyle düşünebilirsiniz: Atom Houston Astrodome’u büyüklüğünde olsaydı atomun çekirdeği küçük bir taş parçası kadar olurdu. Protonların atomun çekirdeğine doluşmuş durumda olmalarına karşın, elektronların çekirdekten belli bir uzaklıkta, çekirdeğin etrafında yayılmış durumda oldukları düşünülür.

 

Bohr Atom Teorisi

1913 yılında, Niels Bohr Planck’ın kuantum hipotezini kullanarak   hidrojen atomu için aşağıdaki varsayımları ortaya attı. (Bir sistemin izin verilen iki enerjisi arasındaki fark belirli bir değere sahiptir ve bu fark enerji kuantumu dur. Planck eşitliği:

E= hg

Planck sabiti h= 6,623*10-34 Js)

E= Bir fotonun enerjisi

g = Frekans

1. Elektron çekirdeğin etrafında dairesel yörüngede (orbitlerde) hareket eder. Bu yörüngelere enerji düzeyleri veya  kabukları denir.

2. Elektron izin verilen sabit bir yörünge dizisinde bulunabilir ve buna temel hal denir. Elektron belirli bir yörüngede ne kadar uzun kalırsa kalsın enerji yayınlamaz ve enerjisi sabit kalır. Atomlar bir elektrik akı veya bek alevi ile ısıtılınca elektronlar enerji absorblayarak daha yüksek enerji düzeyine geçerler. Bu durumdaki atomlar uyarılmış haldedir.

3. Bir elektron yüksek enerji seviyesinden daha düşük enerji seviyesine geçtiğinde belli bir miktarda enerji yayınlar. Bu iki düzey arasındaki enerji farkı bir ışık kuantumu halinde yayılır.

Elektronlar için izin verilen haller kuantum sayısı denen n= 1, n = 2, n= 3,… gibi tam sayılarla ifade edilir. En düşük izin verilen hal temel haldir, çekirdeğe yakın yörüngede bulunur.

            Ana (baş) kuantum sayısı = n ;  Daima tam pozitif sayı ve 1’den 7’ye kadardır ve her bir sayı periyodik cetveldeki periyotlara (yatay sıra) karşılık gelir. Çekirdekten uzaklığı belirtir.

Bir atomun çekirdek etrafındaki n değeri K, L, M, N, O, P, Q alt kabuklarına eşdeğerdir ve buradaki tali yörüngeler s, p, d, f isimleri ile adlandırılır.

K – kabuğunda     1 s tali yörüngesi

L – kabuğunda     1 s  ve 1 p olmak üzere  2 tali yörünge

M– kabuğunda     1 s ,  1 p ve  1 d  olmak üzere 3 tali yörünge

N- kabuğunda      1 s ,  1 p ,  1 d ,  1 f  olmak üzere 4 tali yörünge

Yörüngelerin aldığı elektron sayısı = 2n2 dır.

En dış kabuktaki elektronlara değerlik elektronları denir.

İkinci sayı ise orbital (açısal –momentum ) kuantum sayısı (l) , sıfır dahil pozitif tam sayıdır ve elektron bulutunun şekillerini ifade eder; 

l = 0, 1, 2, 3, 4, …  n-1

l= 0  ise küresel , l= 1 ise labut şeklini alır. Sayı büyüdükçe şekil karışık olur.

Üçüncü sayı ise magnetik kuantum (m) sayısıdır ve boşluktaki elektron bulutunun oriantasyonu ile ilgilidir. –l den  + l ye kadar herhangi bir sayı olabilir.

2 l +1=m

dördüncü kuantum sayısı spin kuantum sayısı (s) dır ve elektronun dönüş yönünü tanımlar. Magnetik alanda elektronların (+) ve (-) spinleri olduğunu gösterir. Spin kuantum sayısı daima +½ veya -½ dır.

Rutherford Atom Teorisi

1. Bir atomun kütlesinin çok büyük bir kısmı ve pozitif yükün tümü, çekirdek denen çok küçük bir bölgede yoğunlaşır. Atomun büyük bir kısmı boş bir uzay parçasıdır. boşluklardan ibarettir.
2. Pozitif yükün büyüklüğü atomdan atoma değişir ve elementin atom ağırlığının yaklaşık yarısıdır.
3. Çekirdeğin dışında, çekirdek yüküne eşit sayıda elektron bulunur. Atomun kendisi elektrik yükü bakımından nötrdür.

Rutherford atom modeli bir atomun çekirdeğin çevresinde elektronların nasıl yerleştiğini göstermez. Klasik fiziğe göre sabit negatif yüklü elektronlar pozitif yüklü çekirdek etrafından çekilmekte idi. Fakat bir atomdaki elektronlar, tıpkı bir gezegenin güneş etrafındaki yörüngesel hareketi gibi hareket halindedir.

Thomson Atom Teorisi

r=10-8 cm olan bir küre olarak düşünmüştür. İçinde proton ve elektron bulunduğunu söylemiş ama elektronun kütlesini protonunkinin yanında ihmal etmiştir. Nötronlardan hiç bahsetmemiştir. Proton ve elektronların atomda rast gele bulunduğunu söylemesi yanlışlığıdır.